
Getting Started with Metro

Getting Started with Metro

Abstract

This series of articles will familiarize developers with the basics of Metro and introduce some of its main features.

iii

Table of Contents
Building a Simple Metro Application ... 1
Enabling Advanced Features in a Web Service Application .. 7

1

Building a Simple Metro Application
Abstract

The intent of this article is to demonstrate the steps required to build a web service starting both from Java code and
from a WSDL document, to deploy that application into a web container, and to build a corresponding web service
client application. In this example, the resulting application is portable across Jakarta XML Web Services imple-
mentations and do not use any Metro-specific technologies. It is intended as a baseline from which to develop your
understanding of the larger Metro stack.

Table of Contents
1. Overview ... 1
2. Environment Configuration Settings ... 1
3. Building a Jakarta XML Web Service ... 3
4. Deploying the Web Service to a Web Container ... 4
5. Building a Jakarta XML Web Service Client ... 5
6. Running the Web Service Client .. 5
7. Undeploying a Jakarta XML Web Service ... 6

1. Overview
Supporting code samples are included to demonstrate building a XML Web Service in the Metro environ-
ment. The examples show how to develop a web service both starting from Java source code and starting
from an existing WSDL document. For both scenarios, it shows how to develop a corresponding client
application from the web service's WSDL document. Additional example shows how to use external web
service metadata feature, which is necessary in case we are unable to use java annotations. The examples
can be found below:

• From-Java example [download/wsit-jaxws-fromjava.zip]

• From-WSDL example [download/wsit-jaxws-fromwsdl.zip]

• External web service metadata example [download/wsit-external-metadata.zip]

As mentioned above, these examples do not enable any Metro-specific technologies. However, the fol-
lowing article in this series, Enabling Advanced Features in a Web Service Application, builds on the
information presented in this document. It explains configuring a web service and its client to enable ad-
vanced features available in Metro.

2. Environment Configuration Settings

2.1. Prerequisites
These series of articles require the following software to be installed on your system:

• Java SE 8 [https://www.oracle.com/java/technologies/javase-downloads.html] or later,

• Apache Ant 1.9.7 [http://ant.apache.org/] or later,

download/wsit-jaxws-fromjava.zip
download/wsit-jaxws-fromjava.zip
download/wsit-jaxws-fromwsdl.zip
download/wsit-jaxws-fromwsdl.zip
download/wsit-external-metadata.zip
download/wsit-external-metadata.zip
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html
http://ant.apache.org/
http://ant.apache.org/

Building a Simple Metro Application

2

• web container: either GlassFish [https://eclipse-ee4j.github.io/glassfish/] or Apache Tomcat 7.0 [http://
tomcat.apache.org/]

• Metro Standalone Budle 2.x [https://eclipse-ee4j.github.io/metro-wsit/] (in case of using Apache Tom-
cat as a web container)

2.2. Adding WSIT (Metro) libraries into your web contain-
er

The following steps are required only if using Apache Tomcat as a web container (GlassFish already con-
tains Metro libraries): Unzip downloaded Metro Standalone Bundle and copy all .jar files from the lib/
directory into <tomcat-install-directory>/endorsed (where <tomcat-install-di-
rectory> points to your Apache Tomcat installation directory). Also put a copy of the servlet-
api.jar library (<tomcat-install-directory>/lib) into endorsed/ libs.

2.3. Web Container "Listen" Port
The Java code and configuration files for the examples used in this document presume that the web con-
tainer is listening on port 8080. Port 8080 is the default "listen" port for both GlassFish (domain1) and
Tomcat. If you have changed the "listen" port, you will need to edit the example source files to account
for that. The following is a list of the files which contain references to the "listen" port:

1. wsit-jaxws-fromjava/src/fromjava/server/AddWebservice.java

2. wsit-jaxws-fromjava/etc/custom-schema.xml

3. wsit-jaxws-fromjava/etc/custom-client.xml

4. wsit-jaxws-fromjava/etc/build.properties

5. wsit-jaxws-fromwsdl/etc/custom-client.xml

6. wsit-jaxws-fromwsdl/etc/build.properties

2.4. Web Container Home Directory
Before building and deploying the web service and its client, the home directory of the web container must
be set either as an environment variable or as a property in the respective build.xml file.

Environment Variables

Assuming that you are running from the command-line, it is probably simplest to set the appropriate en-
vironment variable indicating the web container's "home" directory. For GlassFish, AS_HOME should be
set to the top-level directory of the GlassFish installation. For Tomcat, CATALINA_HOME needs to be set
to the Tomcat top-level directory.

Ant build.xml File

If you would rather not have to set the environment variable for each new terminal session, you can edit
the build.xml file located at the top-level directory of each of the examples. There are two comment-
ed lines, one each for GlassFish (as.home) and Tomcat (catalina.home). Simply uncomment the
appropriate line and edit the value for the directory name.

https://eclipse-ee4j.github.io/glassfish/
https://eclipse-ee4j.github.io/glassfish/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
https://eclipse-ee4j.github.io/metro-wsit/
https://eclipse-ee4j.github.io/metro-wsit/

Building a Simple Metro Application

3

3. Building a Jakarta XML Web Service

3.1. Starting from Java
One way to create a web service application is to start by coding the endpoint in Java. If you are developing
your Java web service from scratch or have an existing Java class you wish to expose as a web service,
this is the most direct path.

The web service is written as a normal Java class. Then the class and its methods that are to be exposed
are annotated with specific web service annotations, @WebService and @WebMethod. The following
code snippet shows an example:

@WebService
public class AddNumbersImpl {
 @WebMethod
 public int addNumbers(int a, int b) throws AddNumbersException {
 if (a < 0 || b < 0) {
 throw new AddNumbersException("Negative number cant be added!",
 "Numbers: " + a + ", " + b);
 }
 return a + b;
 }
}

If you are using GlassFish, the web service in the wsit-jaxws-fromjava example can be compiled
and bundled simply by invoking:

ant server

If using Tomcat, the command-line would be:

ant -Duse.tomcat=true server

The server target in build.xml in turn invokes the tools necessary to process the annotations and
compile the sources, and to bundle the Java class files and configuration files into a deployable web archive
(WAR file). The WAR file will be build/war/wsit-jaxws-fromjava.war. The tools that were
called by ant during this step are briefly described next.

The apt tool (annotation processing tool) processes the annotated source code and invokes the compil-
er itself, resulting in the class files for each of the Java source files. In the accompanying fromjava
example, the ant target build-server-java in build.xml handles this portion of the process. Then the
individual class files are bundled together along with the web service's supporting configuration files into
the application's WAR file. It is this file that will be deployed to the web container in the next step. The
create-war target takes care of this.

3.2. Starting from WSDL
Typically, you would start from WSDL to build your web service if you want to implement a web service
that is already defined either by a standard or an existing instance of the service. In either case, the WSDL
already exists. The wsimport tool will process the existing WSDL document, either from a local copy
on disk or by retrieving it from a network address. An example of manually accessing a service's WSDL
using a web browser is shown below as part of the section on verifying deployment.

As in the previous example, to build the wsit-jaxws-fromwsdl service for GlassFish, you can simply
invoke:

Building a Simple Metro Application

4

ant server

Otherwise for Tomcat use:

ant -Duse.tomcat=true server

wsimport will take the WSDL description and generate a corresponding Java interface and other support-
ing classes. Then the Java compiler needs to be called to compile both the user's code and the generated
code. Finally, the class files are bundled together into the WAR file. The details can be seen in the wsit-
jaxws-fromwsdl build.xml file as the build-server-wsdl and create-war targets.

4. Deploying the Web Service to a Web Con-
tainer

As a convenience, invoking each sample's server target will build that web service's WAR file and im-
mediately deploy it to the web container. However, in some situations, such as after undeploying a web
service from its container, it may be useful to deploy the web service without rebuilding it.

For both the from Java and from WSDL scenarios described above, the resulting application is deployed
in the same manner. However, the details of the deployment process differ slightly between the GlassFish
and Tomcat web containers.

4.1. Deploying to GlassFish
For development purposes, it is simplest to use the "autodeploy" facility of GlassFish. To do so, copy your
application's WAR file to the autodeploy directory for the domain to which you want to deploy. If you
are using the default domain, domain1, set up by the GlassFish installation process, then the appropriate
directory path would be <glassfish-install-home>/domains/domain1/autodeploy.

The build.xml file which accompanies this example has a deploy target for GlassFish. Invoke that target
by running ant in the top-level directory of the respective examples, either fromjava or fromwsdl,
as follows.

ant deploy

4.2. Deploying to Tomcat
Tomcat also has an "autodeploy" feature. That feature can be turned off but is enabled by Tomcat’s "out of
the box" configuration settings. Look in <tomcat-install-directory>/conf/server.xml
for the value of "autoDeploy" if you are unsure. Assuming "autoDeploy" is enabled, then copying
your application to <tomcat-install-home>/webapps is all that is necessary. Again, there is a
target in the ant build.xml file which accompanies this sample. The deploy target can be invoked by
running the following command in the example's top-level directory.

ant -Duse.tomcat=true deploy

4.3. Verifying Successful Deployment
One basic test to verify that the application has deployed properly is to use a web browser to retrieve the
application's WSDL from its hosting web container. The following URLs would retrieve the WSDL from
each of the two example services. If you are running your web browser and web container on different
machines, you will need to replace "localhost" with the name of the machine hosting your web service. It
is also worth ensuring that your web container is actually running at this point.

Building a Simple Metro Application

5

• http://localhost:8080/wsit-jaxws-fromjava/addnumbers?wsdl

• http://localhost:8080/wsit-jaxws-fromwsdl/addnumbers?wsdl

If the browser displays a pageful of XML, things are working. If not, check the web container logs
for any error messages related to the the sample WAR you have just deployed. For GlassFish, the
appropriate log can be found at <glassfish-install-directory>/domains/<your-do-
main>/logs/server.log. For Tomcat, the appropriate log file will be <tomcat-install-di-
rectory>/logs/catalina.out.

5. Building a Jakarta XML Web Service Client
Unlike developing a web service provider, the process for creating a web service client application will
always start with an existing WSDL document. This process is similar to the steps taken when building
a service from an existing WSDL. Typically, the WSDL will be retrieved directly from a web service
provider by the wsimport tool . Wsimport then generates the corresponding Java source code for the
described interface. javac, the Java compiler, is then called to compile the source into class files. The
programmer's code uses the generated classes to access the web service. Here is an example code snippet:

AddNumbersPortType port = new AddNumbersService().getAddNumbersPort();
int a = 10;
int b = 20;
int result = port.addNumbers(a,b);

For both of the associated examples, invoking

ant client

or

ant -Duse.tomcat=true client

will run wsimport to retrieve the service's WSDL and compile the source.

6. Running the Web Service Client
For both examples, execute the resulting command-line clients via

ant run

or

ant -Duse.tomcat=true run

That target simply runs Java with the name of the client's class, such as java
fromwsdl.client.AddNumbersClient. However, for convenience the run target takes care of passing a
list of jar files via Java's -classpath option. When you invoke the run target, you can expect to see
output from the client similar to the following:

[java] May 4, 2006 2:45:50 PM
 [com.sun.xml.ws.policy.jaxws.PolicyWSDLParserExten
 sion] addClientConfigToMap
[java] WARNING: Optional client configuration file URL is missing. No client
 con
 figuration is processed.
[java] Invoking addNumbers(10, 20)
[java] The result of adding 10 and 20 is 30.

http://localhost:8080/wsit-jaxws-fromjava/addnumbers?wsdl
http://localhost:8080/wsit-jaxws-fromwsdl/addnumbers?wsdl

Building a Simple Metro Application

6

[java] Invoking addNumbers(-10, 20)
[java] Caught AddNumbersFault_Exception: Numbers: -10, 20

The WARNING line above is expected for both of these examples. Given that no Metro technologies are
enabled, a configuration file is unnecessary. More information will be provided on Metro configuration
files in the following article.

7. Undeploying a Jakarta XML Web Service
Undeploying a web service means to disable & remove it from the web container. Clients will no longer
be able to use the web service nor will the web service restart without explicit redeployment by the user.
During the development process, it is often useful to undeploy a web service. This section explains the
necessary steps for both GlassFish and Tomcat.

7.1. Undeploying from GlassFish
The asadmin command provides the simplest method of undeploying a web service from GlassFish.

asadmin undeploy --user admin wsit-jaxws-fromjava
asadmin undeploy --user admin wsit-jaxws-fromwsdl

7.2. Undeploying from Tomcat
Undeploying a given web service from Tomcat requires deleting its WAR file from the Tomcat webapps
directory. For a typical UNIX scenario the commands below would delete the sample WAR files. Tomcat
then automatically undeploys the web service within a few seconds.

rm $CATALINA_HOME/webapps/wsit-jaxws-fromjava.war
rm $CATALINA_HOME/webapps/wsit-jaxws-fromwsdl.war

7

Enabling Advanced Features in a Web
Service Application

Abstract

This article highlights the steps required to enable Metro-specific advanced functionalities in a web service and its
corresponding client application. As with the previous article, two accompanying code samples are included. Again,
one starts from Java source code and the other from an existing WSDL document to develop their respective web
services. However, this article and its code samples show how WS-Policy can used to enable WS-Addressing and
WS-Reliable Messaging in the web services and their clients.

Table of Contents
1. Overview ... 7
2. Prerequisites and Environment Configuration ... 7
3. WSIT Configuration and WS-Policy ... 8
4. Configuring WSIT in the Web Service ... 8
5. Building and Deploying the Web Service .. 9
6. Configuring WSIT in the Web Service Client .. 9
7. Building and Running a Web Service Client .. 9
8. Undeploying a Web Service .. 10

1. Overview
Supporting code samples are included to demonstrate building a web service using WSIT functionality.
The examples show how to develop a web service both starting from Java source code and starting from
an existing WSDL document. For both cases, it shows how to develop a corresponding client application
from the web service's WSDL document. The examples can be found in the WSIT source tree here:

• From-Java example [download/wsit-enabled-fromjava.zip]

• From-WSDL example [download/wsit-enabled-fromwsdl.zip]

As you follow along with the sample code, please confirm that you are working in either wsit-en-
abled-fromjava or wsit-enabled-fromwsdl rather than one of the previous article's sample
code directories, wsit-jaxws-fromjava or wsit-jaxws-fromwsdl.

2. Prerequisites and Environment Configura-
tion

As in the previous article, the steps in this document require that you have already installed the
WSIT jars into your web container. It also requires the following software be installed: Java SE 8
[https://www.oracle.com/java/technologies/javase-downloads.html] or later, Apache Ant 1.9.7 [http://
ant.apache.org/] or later, and a web container: either GlassFish [https://eclipse-ee4j.github.io/glassfish/] or
Apache Tomcat 7.0 [http://tomcat.apache.org/]. Further, your Metro build environment needs to be con-
figured as described in the Environment Configuration Settings section of the previous article.

download/wsit-enabled-fromjava.zip
download/wsit-enabled-fromjava.zip
download/wsit-enabled-fromwsdl.zip
download/wsit-enabled-fromwsdl.zip
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
https://eclipse-ee4j.github.io/glassfish/
https://eclipse-ee4j.github.io/glassfish/
http://tomcat.apache.org/
http://tomcat.apache.org/

Enabling Advanced Features
in a Web Service Application

8

3. WSIT Configuration and WS-Policy
Advanced web service features are enabled and configured using a mechanism defined by the Web Ser-
vices Policy Framework [http://specs.xmlsoap.org/ws/2004/09/policy/] (WS-Policy) specification. A web
service expresses its requirements and capabilities via policies embedded in the service's WSDL descrip-
tion. A service consumer verifies it can handle the expressed requirements and, optionally, uses server
capabilities advertised in policies.

Technologies like Reliable Messaging, Addressing, or Secure Conversations, provides a set of policy as-
sertions it can process. Those assertions provide the necessary configuration details to the Metro run-
time to enable proper operation of these features used by a given web service. The assertions may spec-
ify particular configuration settings or rely on default settings that are pre-determined by the specif-
ic technology. For instance, in the snippet shown below, wsrm:AcknowledgementInterval and
wsrm:InactivityTimeout are both optional and could be omitted. The following is an XML snippet
showing WS-Policy assertions for WS-Addressing and WS-Reliable Messaging:

<wsp:Policy wsu:Id="AddNumbers_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsam:Addressing wsp:Optional="false"/>
 <wsrm:RMAssertion>
 <wsrm:InactivityTimeout Milliseconds="600000"/>
 <wsrm:AcknowledgementInterval Milliseconds="200"/>
 </wsrm:RMAssertion>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

This snippet would be equally valid in either a WSIT configuration file or a web service's WSDL document.

4. Configuring WSIT in the Web Service

4.1. Starting from Java

When developing a web service from scratch or based on an existing Java class, WSIT features are enabled
using a configuration file. That file, wsit-fromjava.server.AddNumberImpl.xml, is written
in WSDL format. An example configuration file can be found in the accompanying samples:

• wsit-enabled-fromjava/etc/wsit-fromjava.server.AddNumbersImpl.xml [samples/wsit-enabled-fromja-
va/etc/wsit-fromjava.server.AddNumbersImpl.xml]

The configuration file settings will be incorporated dynamically by the WSIT run-time into the WSDL it
generates for the web service. So when a client requests the service's WSDL, the run-time will embed into
the WSDL any publically visible policy assertions contained in the configuration file. For the example
link above, the Addressing and Reliable Messsaging assertions would be part of the WSDL as seen by
the client.

Note

wsit.xml must be in the WEB-INF sub-directories of the application's WAR file when it is
deployed to the web container. Otherwise, the WSIT run-time environment will not find it.

http://specs.xmlsoap.org/ws/2004/09/policy/
http://specs.xmlsoap.org/ws/2004/09/policy/
http://specs.xmlsoap.org/ws/2004/09/policy/
samples/wsit-enabled-fromjava/etc/wsit-fromjava.server.AddNumbersImpl.xml
samples/wsit-enabled-fromjava/etc/wsit-fromjava.server.AddNumbersImpl.xml
samples/wsit-enabled-fromjava/etc/wsit-fromjava.server.AddNumbersImpl.xml

Enabling Advanced Features
in a Web Service Application

9

4.2. Starting from WSDL

When developing a web service starting from an existing WSDL, the situation is actually simpler. The
policy assertions needed to enable various WSIT technologies will already be embedded in the WSDL
document. Here is an example WSDL document in the accompanying samples:

• wsit-enabled-fromwsdl/etc/AddNumbers.wsdl [samples/wsit-enabled-fromwsdl/etc/
AddNumbers.wsdl]

5. Building and Deploying the Web Service
Once configured, a WSIT-enabled web service is built and deployed in the same manner as a standard
Jakarta XML web service. If you are not familiar with those steps, please review the following sections
from Building a Simple Metro Application: Building a Jakarta XML Web Service and Deploying the Web
Service to a Web Container. However, the URLs needed to verify the respective web services differ from
the previous article's examples and are listed below:

• http://localhost:8080/wsit-enabled-fromjava/addnumbers?wsdl

• http://localhost:8080/wsit-enabled-fromwsdl/addnumbers?wsdl

6. Configuring WSIT in the Web Service Client
Client-side configuration of WSIT functionality is largely automatic in the WSIT environment. The WSDL
document seen by the client will already contain the WSIT policy assertions. Those assertions describe any
requirements from the server as well as any optional features the client may use. The WSIT build tools and
run-time environment will detect the WSDL's policy assertions and configure themselves appropriately, if
possible. If an unsupported assertion is found, an error message describing the problem will be displayed.

7. Building and Running a Web Service Client
As with the web service itself, building and running a WSIT-enabled client application is identical to
running a standard Jakarta XML Web Service client application. Those steps are described in the following
sections of the previous article: Building a Jakarta XML Web Service Client and Running the Web Service
Client. You can expect to see output from the client similar to the following:

[java] Invoking addNumbers(10, 20)
[java] The result of adding 10 and 20 is 30.
[java]
[java] Invoking addNumbers(-10, 20)
[java] Caught AddNumbersFault_Exception: Numbers: -10, 20
[java] 12.1.2012 15:34:37 [com.sun.xml.ws.rx.rm.runtime.ClientTube]
 closeSequences
[java] INFO: WSRM1157: Waiting for sequence
 [uuid:6ecc55a3-78cf-4e8f-9b18-87ffa6fbb8b0] state change to [CLOSED] has
 timed out after 3 000 milliseconds

[java] 12.1.2012 15:34:40 [com.sun.xml.ws.rx.rm.runtime.ClientTube]
 closeRmSession
[java] INFO: WSRM1157: Waiting for sequence
 [uuid:6ecc55a3-78cf-4e8f-9b18-87ffa6fbb8b0] state change to
 [TERMINATING] has timed out after 3 000 milliseconds

samples/wsit-enabled-fromwsdl/etc/AddNumbers.wsdl
samples/wsit-enabled-fromwsdl/etc/AddNumbers.wsdl
samples/wsit-enabled-fromwsdl/etc/AddNumbers.wsdl
http://localhost:8080/wsit-enabled-fromjava/addnumbers?wsdl
http://localhost:8080/wsit-enabled-fromwsdl/addnumbers?wsdl

Enabling Advanced Features
in a Web Service Application

10

8. Undeploying a Web Service
As described in Undeploying a Jakarta XML Web Service, to undeploy a web service means to both disable
and remove it from the web container. This section provides the necessary commands to undeploy this
article's sample web services from both GlassFish and Tomcat.

8.1. Undeploying from GlassFish
asadmin undeploy --user admin wsit-enabled-fromjava
asadmin undeploy --user admin wsit-enabled-fromwsdl

8.2. Undeploying from Tomcat
rm $CATALINA_HOME/webapps/wsit-enabled-fromjava.war
rm $CATALINA_HOME/webapps/wsit-enabled-fromwsdl.war

