Table of Contents
Entity payload, if present in an received HTTP message, is passed to Jersey from an I/O container as an input stream. The stream may, for example, contain data represented as a plain text, XML or JSON document. However, in many JAX-RS components that process these inbound data, such as resource methods or client responses, the JAX-RS API user can access the inbound entity as an arbitrary Java object that is created from the content of the input stream based on the representation type information. For example, an entity created from an input stream that contains data represented as a XML document, can be converted to a custom JAXB bean. Similar concept is supported for the outbound entities. An entity returned from the resource method in the form of an arbitrary Java object can be serialized by Jersey into a container output stream as a specified representation. Of course, while JAX-RS implementations do provide default support for most common combinations of Java type and it's respective on-the-wire representation formats, JAX-RS implementations do not support the conversion described above for any arbitrary Java type and any arbitrary representation format by default. Instead, a generic extension concept is exposed in JAX-RS API to allow application-level customizations of this JAX-RS runtime to support for entity conversions. The JAX-RS extension API components that provide the user-level extensibility are typically referred to by several terms with the same meaning, such as entity providers, message body providers, message body workers or message body readers and writers. You may find all these terms used interchangeably throughout the user guide and they all refer to the same concept.
In JAX-RS extension API (or SPI - service provider interface, if you like) the concept is captured in 2 interfaces.
One for handling inbound entity representation-to-Java de-serialization - MessageBodyReader<T> and the other
one for handling the outbound entity Java-to-representation serialization - MessageBodyWriter<T>.
A MessageBodyReader<T>
, as the name suggests, is an extension that supports reading the message body
representation from an input stream and converting the data into an instance of a specific Java type.
A MessageBodyWriter<T>
is then responsible for converting a message payload from an instance of a
specific Java type into a specific representation format that is sent over the wire to the other party as part of an
HTTP message exchange.
Both of these providers can be used to provide message payload serialization and de-serialization support on the
server as well as the client side. A message body reader or writer is always used whenever a HTTP request or
response contains an entity and the entity is either requested by the application code (e.g. injected as a parameter
of JAX-RS resource method or a response entity read on the client from a Response) or has to be
serialized and sent to the other party (e.g. an instance returned from a JAX-RS resource method or a request
entity sent by a JAX-RS client).
A best way how to learn about entity providers is to walk through an example of writing one. Therefore we will describe here the process of implementing a custom MessageBodyWriter<T> and MessageBodyReader<T> using a practical example. Let's first setup the stage by defining a JAX-RS resource class for the server side story of our application.
Example 8.1. Example resource class
@Path("resource") public class MyResource { @GET @Produces("application/xml") public MyBean getMyBean() { return new MyBean("Hello World!", 42); } @POST @Consumes("application/xml") public String postMyBean(MyBean myBean) { return myBean.anyString; } }
The resource class defines GET
and POST
resource methods. Both methods work with an entity
that is an instance of MyBean
.
The MyBean
class is defined in the next example:
Example 8.2. MyBean entity class
@XmlRootElement public class MyBean { @XmlElement public String anyString; @XmlElement public int anyNumber; public MyBean(String anyString, int anyNumber) { this.anyString = anyString; this.anyNumber = anyNumber; } // empty constructor needed for deserialization by JAXB public MyBean() { } @Override public String toString() { return "MyBean{" + "anyString='" + anyString + '\'' + ", anyNumber=" + anyNumber + '}'; } }
The MyBean
is a JAXB-annotated POJO. In GET
resource method we return
the instance of MyBean and we would like Jersey runtime to serialize it into XML and write
it as an entity body to the response output stream. We design a custom MessageBodyWriter<T>
that can serialize this POJO into XML. See the following code sample:
Please note, that this is only a demonstration of how to write a custom entity provider. Jersey already contains default support for entity providers that can serialize JAXB beans into XML.
Example 8.3. MessageBodyWriter example
@Produces("application/xml") public class MyBeanMessageBodyWriter implements MessageBodyWriter<MyBean> { @Override public boolean isWriteable(Class<?> type, Type genericType, Annotation[] annotations, MediaType mediaType) { return type == MyBean.class; } @Override public long getSize(MyBean myBean, Class<?> type, Type genericType, Annotation[] annotations, MediaType mediaType) { // deprecated by JAX-RS 2.0 and ignored by Jersey runtime return -1; } @Override public void writeTo(MyBean myBean, Class<?> type, Type genericType, Annotation[] annotations, MediaType mediaType, MultivaluedMap<String, Object> httpHeaders, OutputStream entityStream) throws IOException, WebApplicationException { try { JAXBContext jaxbContext = JAXBContext.newInstance(MyBean.class); // serialize the entity myBean to the entity output stream jaxbContext.createMarshaller().marshal(myBean, entityStream); } catch (JAXBException jaxbException) { throw new ProcessingException( "Error serializing a MyBean to the output stream", jaxbException); } } }
The MyBeanMessageBodyWriter
implements the MessageBodyWriter<T>
interface that contains three methods. In the next sections we'll explore these methods more closely.
A method isWriteable
should return true if the MessageBodyWriter<T>
is able to write the given type. Method
does not decide only based on the Java type of the entity but also on annotations attached to the entity
and the requested representation media type.
Parameters type
and genericType
both define the entity,
where type
is a raw Java type
(for example, a java.util.List
class) and genericType
is a
ParameterizedType including generic information (for example List<String>
).
Parameter annotations
contains annotations that are either attached to the resource
method and/or annotations that are attached to the entity by building response like in the following piece
of code:
Example 8.4. Example of assignment of annotations to a response entity
@Path("resource") public static class AnnotatedResource { @GET public Response get() { Annotation annotation = AnnotatedResource.class .getAnnotation(Path.class); return Response.ok() .entity("Entity", new Annotation[] {annotation}).build(); } }
In the example above, the MessageBodyWriter<T>
would get
annotations
parameter containing a JAX-RS @GET
annotation
as it annotates the resource method and also a @Path
annotation as it
is passed in the response (but not because it annotates the resource; only resource
method annotations are included). In the case of MyResource
and method getMyBean
the annotations would contain the
@GET and the @Produces annotation.
The last parameter of the isWriteable
method is the mediaType
which is the media type attached to the response entity by annotating the resource method with a
@Produces
annotation or the request media type specified in the JAX-RS Client API.
In our example, the media type passed to providers for the resource MyResource
and method
getMyBean
would be "application/xml"
.
In our implementation of the isWriteable
method, we
just check that the type is MyBean
. Please note, that
this method might be executed multiple times by Jersey runtime as Jersey needs to check
whether this provider can be used for a particular combination of entity Java type, media type, and attached
annotations, which may be potentially a performance hog. You can limit the number of execution by
properly defining the @Produces
annotation on the MessageBodyWriter<T>
.
In our case thanks to @Produces
annotation, the provider will be considered
as writeable (and the method isWriteable
might be executed) only if the
media type of the outbound message is "application/xml"
. Additionally, the provider
will only be considered as possible candidate and its isWriteable
method will
be executed, if the generic type of the provider is either a sub class or super class of
type
parameter.
Once a message body writer is selected as the most appropriate (see the Section 8.3, “Entity Provider Selection”
for more details on entity provider selection), its writeTo
method is invoked. This method
receives parameters with the same meaning as in isWriteable
as well as a few additional ones.
In addition to the parameters already introduced, the writeTo
method defies also
httpHeaders
parameter, that contains HTTP headers associated with the
outbound message.
When a MessageBodyWriter<T>
is invoked, the headers still can be modified in this point
and any modification will be reflected in the outbound HTTP message being sent. The modification of
headers must however happen before a first byte is written to the supplied output stream.
Another new parameter, myBean
, contains the entity instance to be serialized (the type of
entity corresponds to generic type of MessageBodyWriter<T>
). Related parameter
entityStream
contains the entity output stream to which the method should serialize the entity.
In our case we use JAXB to marshall the entity into the entityStream
. Note, that the
entityStream
is not closed at the end of method; the stream will be closed by Jersey.
Do not close the entity output stream in the writeTo
method of your
MessageBodyWriter<T>
implementation.
The method is deprecated since JAX-RS 2.0 and Jersey 2 ignores the return value. In JAX-RS 1.0 the
method could return the size of the entity that would be then used for "Content-Length" response
header. In Jersey 2.0 the "Content-Length" parameter is computed automatically using an internal
outbound entity buffering. For details about configuration options of outbound entity buffering see the javadoc
of MessageProperties, property OUTBOUND_CONTENT_LENGTH_BUFFER
which configures the size of the buffer.
You can disable the Jersey outbound entity buffering by setting the buffer size to 0.
Before testing the MyBeanMessageBodyWriter
, the writer must
be registered as a custom JAX-RS extension provider. It should either be added to your application
ResourceConfig, or returned from your custom Application sub-class, or
annotated with @Provider annotation to leverage JAX-RS provider auto-discovery feature.
After registering the MyBeanMessageBodyWriter
and MyResource
class
in our application, the request can be initiated (in this example from Client API).
Example 8.5. Client code testing MyBeanMessageBodyWriter
WebTarget webTarget = // initialize web target to the context root // of example application Response response = webTarget.path("resource") .request(MediaType.APPLICATION_XML).get(); System.out.println(response.getStatus()); String myBeanXml = response.readEntity(String.class); System.out.println(myBeanXml);
The client code initiates the GET
which will be matched to the resource method
MyResource.getMyBean()
. The response entity is de-serialized as a String
.
The result of console output is:
Example 8.6. Result of MyBeanMessageBodyWriter test
200 <?xml version="1.0" encoding="UTF-8" standalone="yes"?><myBean> <anyString>Hello World!</anyString><anyNumber>42</anyNumber></myBean>
The returned status is 200 and the entity is stored in the response in a XML
format.
Next, we will look at how the Jersey de-serializes this XML document into a MyBean
consumed by
our POST
resource method.
In order to de-serialize the entity of MyBean
on the server or the client, we need to implement
a custom MessageBodyReader<T>.
Please note, that this is only a demonstration of how to write a custom entity provider. Jersey already contains default support for entity providers that can serialize JAXB beans into XML.
Our MessageBodyReader<T>
implementation is listed in Example 8.7, “MessageBodyReader example”.
Example 8.7. MessageBodyReader example
public static class MyBeanMessageBodyReader implements MessageBodyReader<MyBean> { @Override public boolean isReadable(Class<?> type, Type genericType, Annotation[] annotations, MediaType mediaType) { return type == MyBean.class; } @Override public MyBean readFrom(Class<MyBean> type, Type genericType, Annotation[] annotations, MediaType mediaType, MultivaluedMap<String, String> httpHeaders, InputStream entityStream) throws IOException, WebApplicationException { try { JAXBContext jaxbContext = JAXBContext.newInstance(MyBean.class); MyBean myBean = (MyBean) jaxbContext.createUnmarshaller() .unmarshal(entityStream); return myBean; } catch (JAXBException jaxbException) { throw new ProcessingException("Error deserializing a MyBean.", jaxbException); } } }
It is obvious that the MessageBodyReader<T>
interface is similar to MessageBodyWriter<T>
.
In the next couple of sections we will explore it's API methods.
It defines the method isReadable()
which has a very similar meaning as method
isWriteable()
in MessageBodyWriter<T>
. The method returns true
if it is able to de-serialize the given type. The annotations
parameter contains annotations
that are attached to the entity parameter in the resource method. In our POST
resource
method postMyBean
the entity parameter myBean
is not
annotated, therefore no annotation will be passed to the isReadable. The mediaType
parameter contains the entity media type. The media type, in our case, must be consumable by the POST
resource method, which is specified by placing a JAX-RS @Consumes annotation to the method.
The resource method postMyBean()
is annotated with
@Consumes("application/xml")
,
therefore for purpose of de-serialization of entity for the postMyBean()
method,
only requests with entities represented as "application/xml"
media type will match the method. However, this method might be executed for entity types that are sub classes
or super classes of the declared generic type on the MessageBodyReader<T>
will be also considered.
It is a responsibility of the isReadable
method to decide whether it is able
to de-serialize the entity and type comparison is one of the basic decision steps.
In order to reduce number of isReadable
executions, always define correctly the consumable
media type(s) with the @Consumes
annotation on your custom MessageBodyReader<T>
.
The readForm()
method gets the parameters with the same meaning as in
isReadable()
. The additional entityStream
parameter provides a handle
to the entity input stream from which the entity bytes should be read and de-serialized into a Java entity which
is then returned from the method. Our MyBeanMessageBodyReader
de-serializes the incoming
XML data into an instance of MyBean
using JAXB.
Do not close the entity input stream in your MessageBodyReader<T>
implementation. The stream
will be automatically closed by Jersey runtime.
Now let's send a test request using the JAX-RS Client API.
Example 8.8. Testing MyBeanMessageBodyReader
final MyBean myBean = new MyBean("posted MyBean", 11); Response response = webTarget.path("resource").request("application/xml") .post(Entity.entity(myBean, "application/xml")); System.out.println(response.getStatus()); final String responseEntity = response.readEntity(String.class); System.out.println(responseEntity);
The console output is:
Both, MessageBodyReader<T>
and MessageBodyWriter<T>
can be registered in a
configuration of JAX-RS Client API components typically without any need to change their code. The example
Example 8.10, “MessageBodyReader registered on a JAX-RS client” is a variation on the Example 8.5, “Client code testing MyBeanMessageBodyWriter”
listed in one of the previous sections.
Example 8.10. MessageBodyReader registered on a JAX-RS client
Client client = ClientBuilder.newBuilder() .register(MyBeanMessageBodyReader.class).build(); Response response = client.target("http://example/comm/resource") .request(MediaType.APPLICATION_XML).get(); System.out.println(response.getStatus()); MyBean myBean = response.readEntity(MyBean.class); System.out.println(myBean);
The code above registers MyBeanMessageBodyReader
to the Client configuration
using a ClientBuilder which means that the provider will be used for any WebTarget
produced by the client
instance.
You could also register the JAX-RS entity (and any other) providers to individual
WebTarget
instances produced by the client.
Then, using the fluent chain of method invocations, a resource target pointing to our
MyResource
is defined, a HTTP GET
request is invoked.
The response entity is then read as an instance of a MyBean
type by invoking the
response.readEntity
method, that internally locates the registered
MyBeanMessageBodyReader
and uses it for entity de-serialization.
The console output for the example is:
Usually there are many entity providers registered on the server or client side (be default there must be
at least providers mandated by the JAX-RS specification, such as providers for primitive types, byte array,
JAXB beans, etc.).
JAX-RS defines an algorithm for selecting the most suitable provider for entity processing. This algorithm
works with information such as entity Java type and on-the-wire media type representation of entity, and searches
for the most suitable entity provider from the list of available providers based on the supported media type
declared on each provider (defined by @Produces
or @Consumes
on the provider class)
as well as based on the generic type declaration of the available providers. When a list of suitable candidate
entity providers is selected and sorted based on the rules defined in JAX-RS specification, a JAX-RS runtime
then it invokes isReadable
or isWriteable
method respectively on each
provider in the list until a first provider is found that returns true
. This provider is then used to
process the entity.
The following steps describe the algorithm for selecting a MessageBodyWriter<T>
(extracted
from JAX-RS with little modifications). The steps refer to the previously discussed example application.
The MessageBodyWriter<T>
is searched for purpose of deserialization of MyBean
entity returned from the method getMyBean
. So, type is MyBean
and media type "application/xml"
. Let's assume the runtime contains also
registered providers, namely:
A : @Produces("application/*") with generic type
<Object>
|
B : @Produces("*/*") with generic type <MyBean>
|
C : @Produces("text/plain") with generic type
<MyBean>
|
D : @Produces("application/xml") with generic type
<Object>
|
MyBeanMessageBodyWriter : @Produces("application/xml") with generic
type <MyBean>
|
The algorithm executed by a JAX-RS runtime to select a proper MessageBodyWriter<T>
implementation
is illustrated in Procedure 8.1, “MessageBodyWriter<T>
Selection Algorithm”.
Procedure 8.1. MessageBodyWriter<T>
Selection Algorithm
Obtain the object that will be mapped to the message entity body. For a return type of Response or subclasses, the object is the value of the entity property, for other return types it is the returned object.
So in our case, for the resource method getMyBean
the type will
be MyBean
.
Determine the media type of the response.
In our case, for resource method getMyBean
annotated with @Produces("application/xml")
, the media type will be
"application/xml"
.
Select the set of MessageBodyWriter providers that support the object and media type of the message entity body.
In our case, for entity media type "application/xml"
and type MyBean
, the appropriate MessageBodyWriter<T>
will
be the A
, B
, D
and MyBeanMessageBodyWriter
. The provider C
does
not define the appropriate
media type. A
and B
are fine as
their type is more generic and compatible with "application/xml"
.
Sort the selected MessageBodyWriter providers with a primary key of generic type where providers whose generic type is the nearest superclass of the object class are sorted first and a secondary key of media type. Additionally, JAX-RS specification mandates that custom, user registered providers have to be sorted ahead of default providers provided by JAX-RS implementation. This is used as a tertiary comparison key. User providers are places prior to Jersey internal providers in to the final ordered list.
The sorted providers will be: MyBeanMessageBodyWriter
,
B
. D
, A
.
Iterate through the sorted MessageBodyWriter<T>
providers and, utilizing the
isWriteable
method of each until you find a MessageBodyWriter<T>
that
returns true
.
The first provider in the list - our MyBeanMessageBodyWriter
returns true
as
it compares types and the types matches. If it would return false
, the next provider
B
would by check by invoking its isWriteable
method.
If step 5 locates a suitable MessageBodyWriter<T>
then use its writeTo method to map the
object to the entity body.
MyBeanMessageBodyWriter.writeTo
will be executed and it will serialize the
entity.
Otherwise, the server runtime MUST generate an
InternalServerErrorException
, a subclass of
WebApplicationException
with its status set to 500, and no entity and the client
runtime MUST generate a ProcessingException
.
We have successfully found a provider, thus no exception is generated.
JAX-RS 3.x/2.x is incompatible with JAX-RS 1.x in one step of the entity provider selection algorithm.
JAX-RS 1.x defines sorting keys priorities in the Step 4
in exactly opposite order. So, in JAX-RS 1.x the keys are defined in the order: primary media type,
secondary type declaration distance where custom providers have always precedence to internal providers.
If you want to force Jersey to use the algorithm compatible with JAX-RS 1.x, setup the property
(to ResourceConfig or return from Application from its
getProperties
method):
jersey.config.workers.legacyOrdering=true
Documentation of this property can be found in the javadoc of MessageProperties.
The algorithm for selection of MessageBodyReader<T>
is similar, including the incompatibility
between JAX-RS 3.x/2.x and JAX-RS 1.x and the property to workaround it. The algorithm is defined as follows:
Procedure 8.2. MessageBodyReader<T>
Selection Algorithm
Obtain the media type of the request. If the request does not contain a Content-Type
header then use application/octet-stream
media type.
Identify the Java type of the parameter whose value will be mapped from the entity body. The
Java type on the server is the type of the entity parameter of the resource method. On the client
it is the Class
passed to readFrom
method.
Select the set of available MessageBodyReader<T>
providers that support the media type
of the request.
Iterate through the selected MessageBodyReader<T>
classes and, utilizing their
isReadable
method, choose the first MessageBodyReader<T>
provider that
supports the desired combination of Java type/media type/annotations parameters.
If Step 4 locates a suitable
MessageBodyReader<T>
, then use its readFrom
method to map the entity
body to the desired Java type.
Otherwise, the server runtime MUST generate a NotSupportedException
(HTTP 415 status code) and no entity and the client runtime MUST generate an instance
of ProcessingException
.
In case you need to directly work with JAX-RS entity providers, for example to serialize an entity in your resource
method, filter or in a composite entity provider, you would need to perform quite a lot of steps.
You would need to choose the appropriate MessageBodyWriter<T>
based on the type, media type and
other parameters. Then you would need to instantiate it, check it by isWriteable
method and
basically perform all the steps that are normally performed by Jersey
(see Procedure 8.2, “MessageBodyReader<T>
Selection Algorithm”).
To remove this burden from developers, Jersey exposes a proprietary public API that simplifies the manipulation
of entity providers. The API is defined by MessageBodyWorkers interface and Jersey provides an
implementation that can be injected using the @Context injection annotation. The interface declares
methods for selection of most appropriate MessageBodyReader<T>
and MessageBodyWriter<T>
based on the rules defined in JAX-RS spec, methods for writing and reading entity that ensure proper and timely
invocation of interceptors and other useful methods.
See the following example of usage of MessageBodyWorkers
.
Example 8.12. Usage of MessageBodyWorkers interface
@Path("workers") public static class WorkersResource { @Context private MessageBodyWorkers workers; @GET @Produces("application/xml") public String getMyBeanAsString() { final MyBean myBean = new MyBean("Hello World!", 42); // buffer into which myBean will be serialized ByteArrayOutputStream baos = new ByteArrayOutputStream(); // get most appropriate MBW final MessageBodyWriter<MyBean> messageBodyWriter = workers.getMessageBodyWriter(MyBean.class, MyBean.class, new Annotation[]{}, MediaType.APPLICATION_XML_TYPE); try { // use the MBW to serialize myBean into baos messageBodyWriter.writeTo(myBean, MyBean.class, MyBean.class, new Annotation[] {}, MediaType.APPLICATION_XML_TYPE, new MultivaluedHashMap<String, Object>(), baos); } catch (IOException e) { throw new RuntimeException( "Error while serializing MyBean.", e); } final String stringXmlOutput = baos.toString(); // stringXmlOutput now contains XML representation: // "<?xml version="1.0" encoding="UTF-8" standalone="yes"?> // <myBean><anyString>Hello World!</anyString> // <anyNumber>42</anyNumber></myBean>" return stringXmlOutput; } }
In the example a resource injects MessageBodyWorkers
and uses it for selection
of the most appropriate MessageBodyWriter<T>
. Then the writer is utilized to serialize the entity
into the buffer as XML document. The String
content of the buffer is then returned.
This will cause that Jersey will not use MyBeanMessageBodyWriter
to serialize the entity as it is already in the String
type
(MyBeanMessageBodyWriter
does not support String
). Instead, a simple
String
-based MessageBodyWriter<T>
will be chosen and it will only serialize the
String
with XML to the output entity stream by writing out the bytes of the
String
.
Of course, the code in the example does not bring any benefit as the entity could
have been serialized by MyBeanMessageBodyWriter
by Jersey as in previous examples;
the purpose of the example was to show how to use MessageBodyWorkers
in a resource method.
Jersey internally contains entity providers for these types with combination of media types (in brackets):
byte[] (*/* )
|
String (*/* )
|
InputStream (*/* )
|
Reader (*/* )
|
File (*/* )
|
DataSource (*/* )
|
Source (text/xml , application/xml and media types of the form
application/*+xml )
|
JAXBElement (text/xml , application/xml and media types of the form
application/*+xml )
|
MultivaluedMap<K,V> (application/x-www-form-urlencoded )
|
Form (application/x-www-form-urlencoded )
|
StreamingOutput ((*/* )) - this class can be used as an lightweight
MessageBodyWriter<T> that can be returned from a resource method
|
Boolean, Character and Number (text/plain ) - corresponding
primitive types supported via boxing/unboxing conversion
|
For other media type supported in jersey please see the Chapter 9, Support for Common Media Type Representations which describes additional Jersey entity provider extensions for serialization to JSON, XML, serialization of collections, Multi Part and others.